Printed Page:-04		σe: - 04	Subject	Cor	او• <u>۔</u> 1	RMF	በፈበ)1				
1 11110	u i a		Roll. No		10 1) 1 V11 2	UTU	,1				
NO	IDA I	INSTITUTE OF ENGINEERING AN	ND TE(CHN	OL	OGY	, G	REA	TE	RN	OIL)A
	(An Autonomous Institute Affiliated to AKTU, Lucknow)											
		B.Tech (Working				4 24		`				
		SEM: II - THEORY EXAM Subject: Heat & N				4 - 20	J 2 5)				
Tim	e: 3 H	Hours	v1a55 11	ans	101			I	Max.	M	arks	: 100
		structions:										
		y that you have received the question pa	_									
		stion paper comprises of three Sections	S - A, B, C	& C	. It c	onsis	ts o	fMu	ltipl	e C	hoice	2
		MCQ's) & Subjective type questions. n marks for each question are indicated	l on righ	+ h	and s	ida o	fac	ach o	uasti	ion		
		your answers with neat sketches where	_			iue o	j ec	ich q	uesii	on.		
		uitable data if necessary.	, , , , , , , , , , , , , , , , , , , ,		-) -							
5. Pre	ferabl	ly, write the answers in sequential order	r.									
		should be left blank. Any written materi	ial after	a b	lank	sheet	wil	ll noi	t be			
evalud	ited/ci	hecked.										
SECT	'ION-	-A										20
		all parts:-										
1-a.	-	thermal diffusivity of a substance is (CC)1.K1)									1
- •••	(a)	Inversely proportional to thermal cond		J								_
	(b)	Directly proportional to thermal cond										
	(c)	Directly proportional to the square of		cor	duct	ivitv						
	(d)	Inversely proportional to the square o				•	I					
1-b.	` ′	Ipto the critical radius of insulation (CO				,						1
	(a)	Convection heat loss will be less than		tion	heat	loss						
	(b)	Heat flux will decrease	Condac		11041	1000						
	(c)	Added insulation will increase heat lo	oss									
	(d)	Added insulation will decrease heat lo										
1-c.	` ′	fin protrudes from a surface which is h		tem	pera	ure h	igh	er th	an th	at o	of	1
	its environment. The heat transferred away from the fin is. [CO2,K1]											
	(a)	Heat escaping from the tip of the fin										
	(b)	Heat conducted along the fin length										
	(c)	Convective heat transfer from the fin	surface									
	(d)	Sum of heat conducted along the fin l	ength ar	nd tl	nat co	onvec	ted	fror	n the	sui	face	
1-d.	T	the value of Biot number is very small (l	less than	0.0)1) w	hen (CO	2,K	1)			1
	(a)	The convective resistance of the fluid	is negli	gibl	e							
	(b)	The conductive resistance of the fluid	l is negli	gibl	e							

	()	TT1 1 4' '4 C41 1'1' 1' '11	
	(c)	The conductive resistance of the solid is negligible	
1	(d)	None of these	
1-e.		region of fluid motion near a plate in which temperature gradient exist (CO3,K1)	J
	(a)	Thermal boundary layer	
	(b)	Diathermia boundary layer	
	(c)	Turbulent flow	
	(d)	Laminar flow	
1-f.	F	orced convection in a liquid bath is caused by (CO3, K1)]
	(a)	Intense stirring by an external agency	
	(b)	Molecular energy interactions	
	(c)	Density difference brought about by temperature gradients	
	(d)	Flow of electrons in a random fashion	
1-g.	A	perfectly black body (CO4, K1)	1
	(a)	Absorbs all the incident radiation	
	(b)	Allow all the incident radiation to pass through it	
	(c)	Reflects all the incident radiation	
	(d)	Has its surface coated with lamp black or graphite	
1-h.	R	adiation heat transfer is characterized by (CO4, K1)	1
	(a)	Due to bulk fluid motion, there is a transport of energy	
	(b)	Thermal energy transfer as vibrational energy in the lattice structure of the materia	1
	(c)	Movement of discrete packets of energy as electromagnetic waves	
	(d)	There is circulation of fluid by buoyancy effects	
1-i.		ir enters a counter flow heat exchanger at 70°C and leaves at 40°C. Water enters 30°C and leaves at 50°C. The LMTD in degree C is:(CO5,K2)	1
	(a)	5.65	
	(b)	4.43	
	(c)	19.52	
	(d)	20.17	
1-j.	C	apacity ratio is defined as the product of. [CO5,K1]	1
	(a)	Mass and temperature	
	(b)	Mass and specific heat	
	(c)	Specific heat and temperature	
	(d)	Time and temperature	
2. Att	empt a	all parts:-	
2.a.	Н	ow does the heat conduction differ from convection? (CO1, K1)	2
2.b.	D	refine effectiveness of the fin. [CO2,K1]	2
2.c.	D	refine thermal boundary layer thickness. (CO3, K1)	2

2.d.	Define concept of Black body. (CO4, K1)	2
2.e.	What is Excess temperature in boiling? (CO5, K1)	2
SECTIO	ON-B	30
3. Answ	ver any <u>five</u> of the following:-	
3-a.	A 4 m high and 6 m wide wall consists of 18 cm \times 30 cm cross-section horizontal bricks (k = 0.72 W/m.K) separated by 3 cm thick plaster layer (k = 0.22 W/m.K). There are also 2 cm thick plaster layers on each side of wall and 2 cm thick rigid foam (k = 0.026 W/m.K) on the inner side of the wall. The indoor and outdoor temperatures are 22°C and – 4°C and convection heat transfer coefficients are 10 W/m ² .K and 20 W/m ² .K respectively. Assuming one dimensional steady state conditions. Calculate heat transfer rate from the composite wall. (CO3, K3)	6
3-b.	Derive an expression for critical radius of insulation of a cylinder. (CO1, K3)	6
3-c.	A person is found dead at 5 p.m. in a room where temperature is 20°C. The temperature of the body is measured to be 25°C when found, and the heat transfer coefficient is estimated to be 8 W/m2.K. Modelling the human body a 30 cm diameter, 1.70 m long cylinder, calculate actual time of death of the person. Take thermo physical properties of the body : $k = 6.08$ W/m.K, $\rho = 900$ kg/m ³ , $C = 4000$ J/kg.K.(CO2,K3)	6
3-d.	What is transient heat conduction? State two example of transient heat conduction. [CO2,K2]	6
3.e.	Air at 20°C and 1 atm, flows over a flat plate at 35 m/s. The plate is 75 cm long and is maintained at 60°C. Assuming unit depth in the z direction, calculate the heat transfer from the plate. Properties of the fluid are given as: $\rho=1.128~kg/m^3, \mu=1.906\times10^{-5}~kg/m.s, Pr=0.7, k=0.02723~W/m.°C, c_p=1.007~kJ/kg.°C. N_{uL}=Pr^{1/3}(0.037~R_{eL}^{0.8}-871) (CO3, K3)$	6
3.f.	Define absorptivity, reflectivity and Transmissivity in reference of radiation. (CO4, K2)	6
3.g.	Discuss Film-wise and dropwise condensation. (CO5, K3)	6
SECTIO	<u>ON-C</u>	50
4. Answ	ver any one of the following:-	
4-a.	Derive general heat conduction equation in Cartesian coordinates and mention the assumptions for this derivation. (CO1,K3)	10
4-b.	Steam at 300°C flows in a stainless steel pipe of thermal conductivity, k=30 W/m K whose inner and outer diameters are 5cm and 5.5cm respectively. The pipe is covered with 5cm. thick glass wool (thermal conductivity=0.038 W/m K). Heat is lost to the surroundings at 20°C by convection and radiation with a combined heat transfer coefficient of 15 W/m² K. Taking the inside heat transfer coefficient as 80 W/m² K, calculate the heat lost per meter length of the pipe. (CO1, K3)	10
5. Answ	ver any <u>one</u> of the following:-	
5-a.	A HSS sphere of 20 mm in diameter initially at 600°C is exposed to a current of	10

	air at 30°C with convection coefficient of 150 W/m ² .K. Calculate the Time required to cool the sphere to 100°C. Take properties of mild steel as : $k = 43$ W/m.K, $\rho = 7850$ kg/m ³ , $C = 474$ J/kg.K, $\alpha = 0.045$ m ² /s. (CO2, K3)					
5-b.	Derive the governing equation of fins of uniform cross-section.(CO2,K3)	10				
6. Ans	wer any <u>one</u> of the following:-					
6-a.	Discuss the following with their applications: (CO3,K3) (a) Reynold's Number (b) Grashof number (c) Nusselt Number (d) Prandtl number	10				
6-b.	Water flows at 30°C at 10 kg/s through the diffuser having 5 cm diameter at the entrance and 10 cm diameter at its exit. Calculate the fluid velocity and Reynolds number at the inlet and exit of the diffuser.[CO3, K3]					
7. Ans	wer any one of the following:-					
7-a.	A spherical tank of 2 m diameter is used to store liquid nitrogen at -170° C. It is kept in an evacuated cubic enclosure whose sides are 3 m long. The emissivity of the spherical tank and enclosure are $\varepsilon 1 = 0.2$ and $\varepsilon 2 = 0.9$, respectively. If the temperature of cubic enclosure is 33°C, determine the net rate of radiation heat transfer to liquid nitrogen. (CO4, K3)					
7-b.	Two large parallel planes with emissivity 0.6 are at 900 K and 300 K. A radiation shield with one side polished and having emissivity of 0.05, while the emissivity of other side is 0.4 is proposed to be used. Which side of the shield to face the hotter plane, if the temperature of shield is to be kept minimum? Justify your answer. (CO4, K3)					
8. Ans	wer any <u>one</u> of the following:-					
8-a.	A double pipe heat exchanger is used to heat water with a mass flow rate of 15 kg/s from 15°C to 33°C. The heating fluid enters at 75°C with a capacity rate of 25 kW/K and the mean overall coefficient of heat transfer is 1570 W/m2.K. Determine the surface areas for counter flow and parallel flow arrangements. (CO5, K3)					
8-b.	Explain pool boiling curve and its different regions in details. (CO5, K2)	10				